The main purpose of AJESS is to stimulate and disseminate research and scholarship throughout the international academic and professional community. AJESS is truly committed to publishing contributions from all regions of the world, thus promoting international communication among scholars and practitioners. Innovative applications and unique studies of cross-cultural nature are especially encouraged. AJESS is published biannually, in March and September beginning in 2013.
Asian Journal of Exercise & Sports Science

Characteristics of ACESS

The Asian Council of Exercise and Sports Science (ACCESS) is a nonprofit educational, professional organization. ACCESS is an international organization consisting of professors, researchers, students, and other membership groups in exercise and sports science in Asian regions.

Purpose of ACCESS

There has been a phenomenal and rapid development in the fields of exercise and sports science. The ACCESS is founded in recognition of the need to address the specific concerns of Asia. Therefore, the purpose of the ACCESS is to promote communication, interaction, and cooperation among exercise and sports science professionals and students in Asian educational, scientific, and research institutions. In these ways, the ACCESS seeks to make a contribution to the enhancement of the quality of life among Asians in particular, but also for the rest of the world.

Academic Activities of ACCESS

- Promoting research in the areas of exercise and sports science and facilitating international exchanges among researchers and students in the Asian regions.
- Assisting young scholars/graduate students in conducting applied research in exercise and sports science.
- Organizing conferences on exercise and sport science.
- Publishing resources on exercise and sports science.
- Establishing links with other institutions and organizations involved in exercise and sport science activities.

Types of Membership

1. Professional Membership: persons who have a professional interest in a field related to exercise and sports science.
2. Student Membership: undergraduate and graduate students who are majoring in disciplines related to exercise and sports science.

Preparation of Manuscripts

Manuscripts must conform to the Publication Manual of the American Psychological Association (APA, 6th ed.) and be submitted in English.

All correspondence between authors, section editors, reviewers, and the Editor-in-Chief will be conducted electronically via e-mail attachments. Authors must submit manuscripts to the respective section editors who will initiate the blind review by qualified experts in the subject areas. Authors will be advised of the decision on their papers within two to three months. Manuscripts submitted must be original research and not published elsewhere. Manuscripts should be not be submitted to another journal. Manuscripts should be typed with double spacing include line numbers, and should not exceed 30 pages, including tables, figures, and references. The order of the manuscript should be: 1) title page, 2) blind title page (without names and address(es), 3) abstract, 4) text, 5) references, 6) tables, 7) figure captions, and 8) figures. The author will also provide a biographical note of approximately 25 words.

The title page includes the full title, name of author(s), institutional affiliation(s), running head, date of manuscript submission, full e-mail and postal address, telephone and fax numbers of first author. The blind title page includes the title only. The abstract must not exceed 200 words and should summarize the paper, giving a clear indication of the conclusions. References must follow the APA format. Tables and figures must be presented on separate sheets of paper at the end of the manuscript. Their position within the text should be clearly indicated. Each table and figure must be numbered in the order of presentation and clearly labeled.

Cover Letter

All submissions must be accompanied by a cover letter. In the cover letter, the author(s) must clearly state that the manuscript is original, it has not been published, and it is not currently being considered for publication elsewhere. Any previous form of publication and current consideration in other journal must be disclosed in the cover letter.

Blind Review

To facilitate the blind review process, the author must include a second title page with only the title. The section editor will communicate with the primary author who will be responsible for revising the manuscripts as needed. The revised article will be sent via e-mail attachment to the section editor for final review. On final acceptance, the section editor will forward the accepted manuscript to the Editor-in-Chief, who will then send the copyright form to the primary author.

Copyright Form

ACCESS holds the copyright for AJESS. Authors release the copyright of accepted manuscripts to ACCESS. Authors are granted permission by ACCESS to use their own material in subsequent publications and to reproduce the material in total or in part for educational purposes or personal use.

Where to Write

Authors direct all correspondence to the section editor assigned to the appropriate area of study. Please visit our ACCESS Website http://www.acess.org for detailed information.
Asian Journal of Exercise & Sports Science

Volume 9 • Number 2

CONTENTS

<table>
<thead>
<tr>
<th>Articles</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coconut Water as a Sports Drink and Its Effects on the Fitness of Aging Athletes</td>
<td>1</td>
</tr>
<tr>
<td>Antonio Martins and Daniel Waldschutz</td>
<td></td>
</tr>
<tr>
<td>“Dae-Han-Min-Guk”; The “Red Devils,” Korean Identity, and the 2002 FIFA World Cup</td>
<td>13</td>
</tr>
<tr>
<td>Liv Gi-He Yoon and Samantha King</td>
<td></td>
</tr>
<tr>
<td>Effect of Spirulina on Antioxidant Status and Exercise-Induced Oxidative Stress of Indian Athletes in Comparison to a Commercial Antioxidant</td>
<td>36</td>
</tr>
<tr>
<td>Kommi Kalpana, Doddipalli Lakshmi Kusuma, Priti Rishi Lal, and Gulshan Lal Khanna</td>
<td></td>
</tr>
<tr>
<td>Teaching Didactic Forms and Levels of Male Students’ Physical Activity</td>
<td>49</td>
</tr>
<tr>
<td>Boris Neljak, Dario Novak, Hrvoje Podnar, and Branislav Antala</td>
<td></td>
</tr>
<tr>
<td>A Comparative Approach to Teaching Malaysian School Boys Hockey Using Two Different Pedagogical Styles</td>
<td>57</td>
</tr>
<tr>
<td>Sanmuga Nathan and Gulshan Lal Khanna</td>
<td></td>
</tr>
<tr>
<td>Using Mobile Phone Messages in Pedometer-Based Intervention for Working Adults in Hong Kong</td>
<td>76</td>
</tr>
<tr>
<td>Peggy Pui Yee Cheung, Shihui Chen, and Emmy Man Yee Wong</td>
<td></td>
</tr>
<tr>
<td>The Influence of Relative Age Effects in Representative Youth Rugby Union in the North West of England</td>
<td>86</td>
</tr>
<tr>
<td>Simon J. Roberts and Stuart J. Fairclough</td>
<td></td>
</tr>
</tbody>
</table>

vii
Coconut Water as a Sports Drink and Its Effects on the Fitness of Aging Athletes

Antonio Martins
Daniel Waldschutz
First Fitness Medical Health Centre – Donaustadt
Vienna, Austria

Abstract: The purpose of this study was to investigate the effectiveness of fluid replacement in the instance of aging athletes engaging in physical activity. The first requirement is to comprehensively determine an ideal hydration drink, and the second is to compare the effects of fresh young coconut water to a commercially available carbohydrate-electrolyte beverage (CEB) during 6 months of endurance training and determine the impact on enhanced maximal oxygen uptake (VO$_{2max}$). Forty-eight healthy male joggers, aged 45–55, undertook 6 months of endurance training that involved training sessions 3 days per week, 60–90 minutes per session at 70% VO$_{2max}$. Before and after the training programs, all subjects performed a complete VO$_{2max}$ protocol (cardiopulmonary fitness) using the MedGraphics CPX/D St. Paul, MN, Cardio O$_2$™ System, which combines ECG/VO$_2$ systems simultaneously, real-time 12 lead ECG with incremental bicycle testing until exhaustion to determine the ventilatory threshold and the VO$_{2max}$. The results revealed the superiority of coconut water when compared to a commercially available CEB, as a sports drink and as sports drink to improve endurance power (VO$_{2max}$). We concluded that coconut water is preferential to other sports drinks as a first choice rehydration drink for aging athletes engaged in recreational sport activities.

Keywords: Natural, isotonic, fluid, healthy, cardiopulmonary
Introduction

Over the next 50 years the European population will age substantially, straining both social services and health care systems. Hence, the promotion of regular physical activity in our daily lives is a good strategy against the onset of age-related diseases and disabilities. “Healthy aging,” as defined by Rowe and Kahn (1998), means pursuing regular physical activity while maintaining a lowered risk of disease. There is increasing evidence to suggest that physical activity has a protective effect on brain function in aging people (Rolland, Abellan van Kahn, & Vellas 2010), and evidence is accumulating from basic research, suggesting an improvement of cognitive function in persons involved in aerobic programs (Angevaren, Aufdemkampe, Verhaar, Aleman, & Vanhees, 2008).

According to Hartman-Stein and Potkanowicz (2003), achieving a low risk of disease in conjunction with sports activity in healthy aging requires adapting the nutritional and fluid intake in light of physiological changes, which occur when physical activity is regularly pursued. After age 45, physiological changes also correlate to the decline of body mass and the subsequent decrease of strength per unit of muscle mass. These changes can be successfully counteracted by aerobic activity, which improves cardiovascular fitness (Ryan, 2010). Therefore, appropriate nutritional intake can benefit the aging subject, and, as an added benefit, will help enhance a healthy athletic performance (Hartman-Stein & Potkanowicz, 2003).

The Sports Science Unit at the Universiti Sains Malaysia (Saat, Singh, Siringhe, & Nawawi, 2002) has demonstrated the superiority of natural fresh young coconut water compared to commercially available electrolyte beverages (CEB) and plain water as a rehydration drink for elite athletes. They highlighted the considerable value of coconut water in causing less nausea, fullness, and stomach upset; natural coconut water had a better taste than CEB and was easier to consume in a large amount when compared to the consumption of CEB and water.

The American Dietetic Association, Dietitians of Canada, and American College of Sports Medicine (2009) recommend that aging individuals participate in some form of endurance training to develop and maintain cardiorespiratory fitness. Aging results in a progressive decline of the functional capabilities in various body systems. It is well documented (Arnaud, 2002) that aging adults have problems associated with fluid and electrolyte balance during physical activity. These aging adults experience a reduced thirst sensation and a reduced potential to dissipate body heat (Kenney & Hodgson, 1987; Kenney & Fowler, 2003; Mack et al., 1994). As a consequence, aging people engaging in physical activities are at increased risk of experiencing exercise-induced dehydration, resulting in a significant impact on the level of performance while exercising. Therefore, fluid replacement is very important for aging people compared to young athletes.

The position of the American College of Sports Medicine (1996) highlights that fluid replacement before and during sports activities is unlikely to be sufficient to offset the ongoing fluid loss: age-related heat injury/volume loss in the aging would be effective and would support the contention that fluid replacement is “more important” in aging athletes. Age-related dehydration is attributed to insensible water loss through skin and respiration (Dmitrieva & Burg, 2011) and, consequently, elevated heart rate and rise of core body temperature. Hartman-Stein and Potkanowicz (2003) and Noakes (1993) have confirmed this theory. Undoubtedly, aging athletes are continuously faced with the potential of becoming significantly dehydrated in the course of sports activity.
For aging people to avoid a negative net water and electrolyte balance while exercising, a decision must be made concerning the pre-exercise hydration strategy. The aggressive drinking policy protocol, as prescribed by the American College of Sports and Exercise Medicine (1996), seems to be a strenuous procedure when applied to aging people. The primary reason is because aging people have difficulties with such demanding voluntary ingestion prior to and during sports activities. While exercising, aging people experience significant changes in their respiratory rate, even without ingesting large amounts of fluid that will consequently lead to a sensation of epigastric fullness during exercising. Therefore, it is most improbable that aging athletes will drink the adequate amount of fluids necessary to maintain optimal hydration while exercising on a regular basis.

A study that compared coconut water to both plain water and a rehydration drink containing about four times more sodium than coconut water found that all three provided adequate rehydration (Saat et al., 2002). However, blood sugar levels were restored faster with coconut water and the rehydration drink than with water (Saat et al., 2002). This advantage gave us the impulse to compare coconut water and CEB in the aging population. We chose coconut water not because it replenishes fluids well, but rather because its exercise-enhancing properties are not well understood.

The purpose of the present study was to compare the two drinks, fresh young coconut water and carbohydrate-electrolyte beverage, in terms of (a) palatability/acceptability of the respective drink during training and (b) improvements in pre-performance hydration status and subsequent performance in people aged 45–55 who do sports on a recreational basis. Coconut water, a natural drink, is compared to a commercially available carbohydrate-electrolyte solution (Gatorade®) to assess the effectiveness of the natural sports drink in improving the hydration status and consequently the endurance performance of aging athletes.

Methods

Subjects

Forty-eight healthy male volunteers, between 45 and 55 years old, engaged in regular physical activity (jogging) on a recreational basis but not specifically trained for endurance running. All subjects signed a written consent form, were residents of the same city district, and were accustomed to the same altitude.

Cardiopulmonary Fitness Testing

Each subject completed a VO\(_{2\max}\) protocol as follows: Cardiopulmonary fitness was assessed by a maximal, symptom-limited exercise tolerance test using the MedGraphics CPX/D, St. Paul, MN, Cardio O\(_2\)™ System, which combines ECG/VO\(_2\) systems simultaneously, real-time 12 lead ECG and directly measures VO\(_2\) data in one unique system. Tests were performed with electronically braked bicycle ergometers, and the testing protocol comprised a 3-minute, 20-watt step-by-step linear increase of work load (Ergoline bicycle ergometer).

Respiratory gas exchange was measured through the breath-by-breath method using a flow device with a bidirectional pressure pre-Vent-Pneumotac, with a range of ± 18 L/s, accuracy ± 3% or 50 ml, resolution 8.64 ml/s, dead space < 20 ml, as well as O\(_2\) and CO\(_2\) analysis. The pre-Vent-Pneumotac measures the maximal oxygen uptake, defined as the highest value for the plateau in oxygen uptake in VO\(_2\) (ΔVO\(_2\) ≤ 50 ml.min\(^{-1}\) at VO\(_2\) peak and
the closest neighboring data point), with increases in external work, which meet the criteria of maximal respiratory exchange rates (RER ≥ 1.1).

Prior to testing, the pre-Vent-Pneumotac was calibrated with 10 samples from a 3 L calibration syringe. The gas analyzers were also calibrated before each test according to the room air and medically certified calibration gases (12.29% O₂, 5.12% CO₂). Heart rate and blood pressure were recorded throughout the exercise tests. The subjects completed a physical examination to determine and record their personal height and weight. The seat and handle bar heights of the bicycle ergometer were set according to the subject's specifications, and gas exchange data at rest were measured and recorded. Subjects were instructed to maintain a pedal cadence between 70 and 75 rpm during exercise and to pursue exercise until volitional fatigue. Termination of the test occurred when the subject was unable to maintain a pedaling cadence of 40 rpm. The Ventilatory Threshold (VT) was measured according to established criteria, which include the determination of VE/VO₂, VE/VCO₂, PETO₂, and PETCO₂ from a 15-second computer analysis plotted against time in minutes. The 15-second time span was selected because it measured VT most clearly. The criteria used to determine VT were systematic increases in both VE/VO₂ and PETO₂ without corresponding increases in VE/VCO₂ and PETCO₂. The VO₂ that corresponded to the VT was then divided by VO₂max to express VT as a percentage of VO₂max.

Training
AFTER completing the initial cardiopulmonary fitness test, the subjects began their endurance training. Training volume was similar for all subjects: 3 days a week, 60–90 min/session, 70% VO₂max. All subjects were issued telemetric heart rate monitors with the purpose to exercise according to their training protocol. All subjects started their training the same day after finishing their testing, and training was performed on the same weekdays. During training, all subjects were wearing sport clothes and underwear made of identical texture and issued solely by one company. They were instructed to record their body weight (without clothes) before and after each training day. Pre- and post-training cardiorespiratory fitness (VO₂max) were measured in all subjects. The training period was devised over a span of 6 months. All subjects were subsequently submitted to a second VO₂max protocol testing.

Fluid Replacement Trial
This trial was designed to investigate the effects of two different carbohydrate-electrolyte solution replacement fluids on the adaptive response of maximal aerobic power (VO₂max) during endurance exercise training in aging people. All subjects were instructed to record their drinking volume before and during exercise. They were randomly divided into two groups of 24 subjects each. For each group the drink was kept in an unidentified bottle, and for 6 months of the testing period they only drank their respective drink on exercise days. They all ate a normal well-balanced healthy diet, and no ergonomics or nutraceutics were allowed. The same drink was used for post-exercise rehydration. Table 1 describes the nutrient composition of both drinks. One group ingested a natural carbohydrate-electrolyte solution extracted from the fruit of Cocos nucifera—a tropical palm tree—and the other group ingested a commercially available artificial carbohydrate-electrolyte solution (Gatorade®). All subjects were instructed to make a note on every training day of episodes of gastrointestinal discomfort, muscle cramps, as well as the palatability sensation of the drink.
Fluid Intake Protocol

Pre-Event Hydration: One hour pre-exercise, all subjects were instructed to voluntarily ingest their respective test drink at the ratio of 1.0 ml/kg of body mass. They then performed a urine sample for urine color measurement (Aution test strip for urine-menarini diagnostics') to monitor hydration status. Urine color was compared to the standard criteria of urine specific gravity as well as the osmolality on a seven-grade color chart (1000 to 1030 as specific gravity test stick). They were instructed to drink a bolus of 1.0 ml/kg of their respective drink until urine specific gravity dropped below 1010. Repeated ingestion of boluses of their respective drink was dependent on each urine test result. During exercise, serial drinking of 0.5 ml/kg body weight was ingested every 15 min. Post-exercise hydration was ad libitum.

Statistical Analysis

All anthropometric values of health-related variables and physiological tests were expressed as means and standard deviations (SD). Analysis of variance (ANOVA) with repeated measures followed by a multiple comparison test was performed to find out the significant difference in selected variables among the training phase. In each case, the significance level was chosen at 0.05. For all calculations, a statistical software package (SPSS) was used.

Results

Table 2 shows the demographic characteristics of both groups in terms of age, height, weight, and BMI (Body Mass Index) and reveals no noteworthy difference. Table 3 demonstrates a significant increase in endurance capacity (p < 0.05) for the coconut water group after 6 months of the endurance training period. The ventilatory threshold (VT) for
coconut water group showed considerable improvement compared to the CEB group. The data recording the number of periods of gastrointestinal discomfort as shown in Table 4 demonstrate the superiority of coconut water in causing less nausea, fullness, and stomach upset compared to the CEB. Furthermore, as demonstrated in Table 4, coconut water was easier to consume in large amounts due to its pleasant taste. The volume of ingestion was also higher in the coconut water group than in the CEB group, and subjects in the coconut water group experienced no muscle cramp during the 6-month training period.

Discussion

The present work shows that coconut water, compared to the commercially available CEB, is a superior hydration drink not only for fluid replenishment but also for improved VO\textsubscript{2max} over a 6-month endurance training strategy for aging joggers engaged in recreational activity. One reason that coconut water is superior as a sports drink compared to CEB is because coconut water seems to restore blood glucose levels faster than CEB and keeps the levels within the physiological range as has been previously demonstrated by Saat et al. (2002), though in a population of young athletes.

Table 2
Demographic Characteristics of Both Groups of Joggers Drinking Either Natural Coconut Water (CW) or Commercially Available CEB

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>CW group</th>
<th>CEB group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants (male)</td>
<td>48</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Age range (years)</td>
<td>45–55</td>
<td>46–55</td>
<td>45–51</td>
</tr>
<tr>
<td>Mean age</td>
<td>49.4</td>
<td>49.6</td>
<td>50.1</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>177 (±3)</td>
<td>177 (±3)</td>
<td>178 (±2)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>77 (±4)</td>
<td>77 (±3)</td>
<td>76 (±3)</td>
</tr>
<tr>
<td>BMI</td>
<td>24.55 (±0.45)</td>
<td>24.70 (±0.01)</td>
<td>23.97 (±0.41)</td>
</tr>
</tbody>
</table>

Table 3
Mean Values of VO\textsubscript{2max} (ml/kg/min) and VT Between CW and CEB

<table>
<thead>
<tr>
<th></th>
<th>CW group</th>
<th>CEB group</th>
</tr>
</thead>
<tbody>
<tr>
<td>VO\textsubscript{2max} pre-training</td>
<td>34.6*</td>
<td>34.7</td>
</tr>
<tr>
<td>VO\textsubscript{2max} post-training</td>
<td>41.1*</td>
<td>36.5</td>
</tr>
<tr>
<td>VT pre-training (in % VO\textsubscript{2max})</td>
<td>65.6*</td>
<td>66.5</td>
</tr>
<tr>
<td>VT post-training (in % VO\textsubscript{2max})</td>
<td>78.1*</td>
<td>65.1</td>
</tr>
</tbody>
</table>

* p < 0.01
Besides that, one of the greatest advantages of coconut water was its palatability. Subjects found it sweeter than the other drink, and it was less likely to produce stomach upsets. In the setting of the aging population, people who have reduced thirst sensation, the use of coconut water as a sports drink is a better choice because it has allowed better compliance. Coconut water as a sports drink has been praised not only for the quantity ingested as fluid replacement but also for its quality as natural food product.

Saat et al. (2002) discovered a new “old” sports drink that showed greater effectiveness as a rehydration drink when compared to CEB. This sports drink is more palatable, it replenishes quite gently fluid and electrolyte losses without causing stomach upset or fullness, and it is easier to consume in larger amount. The new “old” sports drink is a liquid endosperm contained in the fruit called Cocos nucifera L. The fruit contains a clear liquid with a sweetish taste. This liquid called “coconut water” is a pleasant and refreshing drink. As a matter of fact, during World War II, when intravenous solution was scarce, coconut water would be directly siphoned as an IV solution into the veins (Campbell-Falck, Thomas, Falck, Tutuo, & Clem, 2000; UN News Centre, 2000). Because coconut water is the only natural isotonic drink available in nature, we have compared it to a commercially available CEB (Gatorade®).

The absence of exercise-associated muscle cramp (EAMC) among the coconut water group, in contrast to the CEB group, is another interesting finding because the occurrence of EAMC is quite common among endurance athletes. The etiology of EAMC is not thoroughly understood, yet Schwellnus (1999) has demonstrated a relationship between EAMC and abnormal spinal control of motor neuron activity, in particular when a muscle contracts in a shortened position and when the incidence of EAMC seems directly related to muscle fatigue. The role of inflammation during exercise-induced muscle injury has not yet been clearly assessed. It is possible that the inflammatory response may be responsible for initiating or amplifying skeletal muscle injury. The involvement of cytokines as an anti-inflammatory factor in response to stress to the muscle fiber has already been demonstrated.

Table 4
Data on Number of Gastrointestinal Discomfort and/or Muscle Cramps During Training in the 6-Month Period Tests for Joggers Drinking CW vs. CEB as Hydration Drink

<table>
<thead>
<tr>
<th></th>
<th>CW group (n=24)</th>
<th>CEB group (n=24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastrointestinal discomfort</td>
<td>2</td>
<td>26</td>
</tr>
<tr>
<td>Exercise-associated muscle cramps (EAMC)</td>
<td>None</td>
<td>54</td>
</tr>
<tr>
<td>Palatability/Sweetness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very good</td>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>Good</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>Middle taste</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Medium amount ingested 1 hr before training (ml)</td>
<td>922</td>
<td>522</td>
</tr>
</tbody>
</table>

Besides that, one of the greatest advantages of coconut water was its palatability. Subjects found it sweeter than the other drink, and it was less likely to produce stomach upsets. In the setting of the aging population, people who have reduced thirst sensation, the use of coconut water as a sports drink is a better choice because it has allowed better compliance. Coconut water as a sports drink has been praised not only for the quantity ingested as fluid replacement but also for its quality as natural food product.

Saat et al. (2002) discovered a new “old” sports drink that showed greater effectiveness as a rehydration drink when compared to CEB. This sports drink is more palatable, it replenishes quite gently fluid and electrolyte losses without causing stomach upset or fullness, and it is easier to consume in larger amount. The new “old” sports drink is a liquid endosperm contained in the fruit called Cocos nucifera L. The fruit contains a clear liquid with a sweetish taste. This liquid called “coconut water” is a pleasant and refreshing drink. As a matter of fact, during World War II, when intravenous solution was scarce, coconut water would be directly siphoned as an IV solution into the veins (Campbell-Falck, Thomas, Falck, Tutuo, & Clem, 2000; UN News Centre, 2000). Because coconut water is the only natural isotonic drink available in nature, we have compared it to a commercially available CEB (Gatorade®).

The absence of exercise-associated muscle cramp (EAMC) among the coconut water group, in contrast to the CEB group, is another interesting finding because the occurrence of EAMC is quite common among endurance athletes. The etiology of EAMC is not thoroughly understood, yet Schwellnus (1999) has demonstrated a relationship between EAMC and abnormal spinal control of motor neuron activity, in particular when a muscle contracts in a shortened position and when the incidence of EAMC seems directly related to muscle fatigue. The role of inflammation during exercise-induced muscle injury has not yet been clearly assessed. It is possible that the inflammatory response may be responsible for initiating or amplifying skeletal muscle injury. The involvement of cytokines as an anti-inflammatory factor in response to stress to the muscle fiber has already been demonstrated.
in pertinent and relevant literature (Appell, Soares, & Duarte, 1992). As a matter of fact, coconut water is acknowledged as one of the best sources of cytokines (kinetin) found in nature (Ge et al., 2005).

Intentionally, the ambitions of the current study are to replicate what occurs in the real world (i.e., training after coming back home from work or after waking up in the morning) and to educate those who work with the aging population group with actual pertinent data from the perspective of sport science. This study underlines the growing international dimension of medicine applied to the shared endeavor of aging successfully. The findings support recommendations on the pertinent fluid intake protocol that are particularly designed to meet the specific needs of aging athletes. Training techniques to improve VO$_{2\text{max}}$ and enhance performance have limited application because aging athletes do not necessarily strive to achieve the highest level of training. For this reason, we focus on the pre-hydration strategy at its full potential to induce an improvement in the hydration status during exercise and also to enhance endurance capacity (VO$_{2\text{max}}$). The taste of the drink plays an important role in this regard as the taste profile can encourage volitional fluid ingestion prior to training while avoiding gastrointestinal distress.

The main significance of this research was to compare fresh young coconut water with a commercially available CEB, over an extended observation period, in aging athletes engaged in jogging on a regular basis. The aging population group deserves special attention because of a poor adaptive physiological response to dehydration, such as a reduced thirst sensation and a reduced potential to dissipate body heat and increased insensible water loss. This population group may be at risk of having heat stroke due to complications associated with fluid and electrolyte imbalance during exercise. Hyperthermia, hypovolemia, hypoglycemia, electrolyte imbalance, and gastrointestinal distress are factors that contribute to quick fatigue, thus limiting exercise performance. Hydration strategies should aim at interventions that can positively influence these processes. The findings of this initial study demonstrate the superiority of fresh young coconut water versus a commercially available CEB not only as a hydration drink but also as a way to improve aerobic capacity of aging athletes. We argue that an additional positive effect of coconut water is the faster restoration of blood sugar levels than other drinks, subsequently leading to volitional intake that is higher in volume. Saat et al. (2002) also witnessed these findings in a group of young athletes.

Lindstedt et al. (1998) postulated that the principle mechanism to improve VO$_{2\text{max}}$ relies on the mitochondrial ability to extract and process oxygen in the muscle cell. Skeletal muscle will therefore be able to assimilate large amounts of oxygen, resulting in an adequate muscle adaptation. This muscle adaptation mechanism results in higher levels of mitochondrial enzymes. The physiological muscle adaptation of aging people evidenced in the course of this current research will be the subject of the next study. Furthermore, fatigue as a functional sign of muscle damage (structural damage) will be observed after exercise, more specifically with the phenomenon of eccentric contractions resulting in mechanical stress to the fiber (Appell et al., 1992).

Aerobic capacity is the ability to produce energy by utilizing fuel in the presence of oxygen and is a function of maximal oxygen uptake (VO$_{2\text{max}}$). This represents the body’s maximum total aerobic metabolic rate. To more cohesively interpret the findings of this investigation regarding the function of coconut water, compared to commercially available CEBs, in improving the aerobic capacity of aging athletes, we assessed other important factors that might impact on improving endurance, for instance muscle adaptation.
viewpoints of factors affecting VO_{2max} tend to identify multifactorial mechanisms including the pulmonary system, cardiovascular system (central), and the oxygen delivery system (peripheral) mechanism (Cain, 1995).

Maughan and Murray (2001) stated there is a biological continuum of integrated control of voluntary fluid intake. The neuro-hormonal, sensory, psychological, social, and cultural elements that compose the milieu in which we find ourselves combine together to determine the blend of beverage choice and level of fluid intake, which occurs during physical activity. To increase the motivation to drink, we designed a new strategy of self-check of the athletes’ individual hydration status, paying greater attention to the fluid intake strategy before the start of physical activities, an important element in reducing the risk of inadequate hydration and in maintaining peak physiological functions and performance. Palatability is of particular importance in the instance of voluntary intake because it pertains to the concept that a beverage consumed in great quantity is, by definition, a palatable one. Extensive ingestion research conducted by Rolles (1991) showed evidence of the relationship between taste and drinking consumption in animal and human populations and concluded that the taste of the available drink is the major determinant in the amount consumed. Passe, Horn, and Murray (2000) highlighted the importance of taste in contributing to voluntary fluid intake and suggested that a powerful interaction exists between flavor, palatability, and exercise status. While most of the published research on the topic of taste and voluntary intake has examined the positive impact of palatable flavors, less attention has been given to how to optimize flavor for voluntary intake. To this intent, we chose coconut water because of its great value as a “natural thirst quencher” that provides the body with the same physiological electrolyte composition as seen in the intracellular space. These healthy properties arise from coconut water’s well-balanced chemical composition, rendering it a natural isotonic solution, with a pleasant flavor and relatively low carbohydrate content (2.6%).

The Austrian Institute of Sport Medicine (Minehan, Riley, & Burke, 2002) concluded that enhanced fluid balance will consequently result in better performance and that this can be achieved by using flavored drinks rather than water. However, the results of our study also indicated that the choice of sports drink can significantly affect the result of endurance training performance. The physiological benefits of being well hydrated prior to exercise are beyond doubt. Commercially available CEB has been used with the intent of maintaining fluid–electrolyte balance during exercise. Most of the research conducted on hydration has been carried out with rehydration protocols comparing CEB drinks to a plain water control group, with CEB as the best choice of rehydration fluids. This current research is based on the premise that a status of suboptimal hydration prior to exercise is detrimental to performance, and therefore we concentrate on improving the efficiency of training by focusing on the quality of the drink rather than the quantity of fluid ingested.

Our results allowed us to conclude that the quality of coconut water compared to commercially available CEB is superior as a sports drink for recreational endurance sport activity of aging athletes. The international consensus recommends regular physical activity for adults to maintain mental and physical health. Focusing on the aging population group, the present study is designed to develop pertinent recommendations, which can positively influence the exercise performance of aging recreational athletes. Stefancik (2001) has demonstrated that for aging people the maintenance of healthy weight is more strongly associated with the level of regular physical activity than with caloric intake. In addition
to maintaining a healthy weight, recreational athletes exercise for enjoyment and for the derived positive effects of maintaining a healthy weight, thus diminishing the risk of age-related disabilities while retaining high mental and physical functionality, which is nowadays defined as “healthy aging.”

Research in the field of aging (Ehsani, Ogawa, Miller, Spina, & Jilka, 1991; Thomas, McCormick, Zimmerman, Vadlamudi, & Gosselin, 1992) has shown that an increase in maximal training can successfully enhance cognitive functions, enhance cardiopulmonary fitness, and improve the quality of life and suggests that early intervention contributes significantly to the reduction of age-related disease and disabilities. In reality, intensive educational advice has not shown much success in improving volitional fluid intake prior to exercise (as evidenced through personal experience). Choosing the right drink will certainly influence volitional intake, yet the drink must achieve the nutritional requirements for water and electrolytes to avoid dehydration, hypoglycemia, hyperthermia, muscle glycogen depletion, and electrolyte imbalance. Furthermore, the drink should be pleasing to the palate to induce greater intake of fluid.

Notwithstanding the importance of physical changes that occur in the course of chronological aging, many popular misconceptions still remain, which reflect, in part, the limited availability of reliable information. Most research regarding fluid intake prior to, or during, exercise has been conducted in young well-trained athletes or sport students and does not accurately reflect the physiological status of an aging athlete. Recently Kallman, Feldman, Krieger, and Bloomer (2012) compared coconut water with CEB on measures of hydration and physical performance in exercise-trained men. They concluded that little difference was noted between coconut water to water and CEB in markers of hydration and exercise performance and that additional studies with more demanding dehydration protocols will be needed.

Fresh young coconut water, which offers an unusual blend of nutrients, is especially rich in potassium, sodium, and magnesium and small amounts of phosphorus and natural sugar. Suprisingly, coconut water is relatively low in calories compared to typical fruit juice. Many commercially available bottled coconut water drinks are significantly different from fresh young coconut water. Most of them are made from mature coconuts and do not contain the important composition of nutrients. Kallman and Saat et al’s (2002) studies could have different results because of the use of two different types of coconut water.

We emphasize here that fresh young coconut water used in aging athletes has greater benefits when compared to CEB with regard to improving exercise endurance. Of particular interest for future studies will be to explore the exactly how fresh young coconut water promotes this enhancement of endurance in aging athletes during recreational sports activity.

References

